ISIT Awards Session Brochures
At each ISIT, the leadership of the ÌÇÐÄlogo Information Theory Society presents a number of awards, including the Thomas M. Cover Dissertation Award, the James L.
At each ISIT, the leadership of the ÌÇÐÄlogo Information Theory Society presents a number of awards, including the Thomas M. Cover Dissertation Award, the James L.
We consider the one helper source coding problem posed and investigated by Ahlswede, Körner, and Wyner for a class of information sources with memory. For this class of information sources we give explicit inner and outer bounds of the admissible rate region. We also give a certain nontrivial class of information sources where the inner and outer bounds match.
Quantum sensing and communication (QSC) is pivotal for developing next-generation networks with unprecedented performance. Many implementations of existing QSC systems employ Gaussian states as they can be easily realized using current technologies. However, Gaussian states lack non-classical properties necessary to unleash the full potential of QSC. This motivates the use of non-Gaussian states, which have non-classical properties beneficial for QSC. This paper establishes a theoretical foundation for QSC employing photon-varied Gaussian states (PVGSs).
In a spin chain governed by a local Hamiltonian, we consider a microcanonical ensemble in the middle of the energy spectrum and a contiguous subsystem whose length is a constant fraction of the system size. We prove that if the bandwidth of the ensemble is greater than a certain constant, then the average entanglement entropy (between the subsystem and the rest of the system) of eigenstates in the ensemble deviates from the maximum entropy by at least a positive constant.