This is a page with all possible (non-custom) blocks
Used to be "Covid-19 updates"
Awards
Aaron D. Wyner Distinguished Service Award
Claude E. Shannon Award
Communications Society & Information Theory Society Joint Paper Award
Goldsmith Lecturer
Information Theory Society Paper Award
Jack Keil Wolf ISIT Student Paper Award
James L. Massey Research & Teaching Award for Young Scholars
Joy Thomas Tutorial Paper Award
Padovani Lecturer
Thomas M. Cover Dissertation Award
Awards
Distinguished Lecturers
Events
DCC2026 - Data Compression Conference
The Data Compression Conference (DCC) is an international forum for current work on data compression and related applications. It will take place March 24–27, 2026 at The Cliff Lodge convention center in the beautiful Snowbird & Alta Ski areas.
https://datacompressionconference.org/
The 10th van der Meulen Seminar
The 10th van der Meulen Seminar will be held at Eindhoven University of Technology on Monday, 24 November 2025. The seminar will feature three lectures by leading international experts in information theory.
Call for Papers: XIÐ¥ International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY 2025)
The 19th International Symposium on "Problems of Redundancy in Information and Control Systems" will take place on 05-07th November 2025. Paper submission deadline is the 22st of September, 2025.
Conferences
BoG Meeting - Hybrid Meeting, NYC - November 2025
This will be a hybrid meeting in person room and on Zoom.
Call for Papers: XIÐ¥ International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY 2025)
The 19th International Symposium on "Problems of Redundancy in Information and Control Systems…
XIÐ¥ International Symposium on Problems of Redundancy in Information and Control Systems (REDUNDANCY 2025)
The conference will be held on 05–07 November 2025 at the MIEM HSE premises (Tallinskaya 34, Moscow…
Job list
Tenure-track Positions in Electrical Engineering at Harvard
          
          Postdoctoral research fellowship in network coding
          
          Simons-Berkeley Research Fellowship
          
          Research Fellow in Coding Theory
          
          Multiple EECS Faculty Positions at Northwestern University
          
          Tenure-track position at Caltech
          
          Faculty positions at Washington University in St. Louis
          
          Faculty Position (including Information Theory) at Penn State
          
          Moreau Academic Diversity Postdoctoral Program at University of Notre Dame
          
          Post-doc Opening at Rice University
          
          PhD Scholarships (The University of Newcastle)
          
          Post-Doctoral Position in Physical Layer Security at the University of Padova, Italy
          
          Post-doctoral positions in information and communication theory
          
          Postdoctoral Fellowship: Center for Science of Information (CSoI)
          
          Postdoctoral Fellowship, Hamilton Institute
          
          Simons Foundation Postdoc at UT Austin
          
          Postdoctoral research fellowship in network coding
          
          Postdoc Position in Wireless Communications at Northwestern University
          
          Northwestern University Faculty Position for Assistant Professor in Communications, Networking or Control (Including Robotics)
          
          Pagination
Jobs Board
PhD Student in Quantum Error Correction
We are pleased to announce an open PhD position in the area of Quantum Error Correction. We are…
PhD stipend
Fully funded PhD stipend available in the field of causal discovery and spatiotemporal analysis of…
Postdoctoral Research Associate in Information Theory and Statistics
Postdoc position in information theory and statistics, funded by the EPSRC's INFORMED-AI Hub.…
News
Reminder: Board of Governors Election - Deadline to vote 6 November 2025
Voting is now open to society members for the Board of Governors (2026-2028) Election.
…
ÌÇÐÄlogo USA Virtual Career Fair
A nationwide, virtual recruitment event connecting students, young professionals, and members with…
ÌÇÐÄlogo Day Offer - Discount ITSoc membership
In celebration of ÌÇÐÄlogo Day, take advantage of an exclusive offer available for first-time ITSoc…
Election of Members to the Board of Governors for a Three-Year Term 1 January 2026 – 31 December 2028
Voting is now open to society members for the Board of Governors (2026-2028) Election
News
ISIT deadline extended to 1/15/2020 11:59pm EST
Contribution for newsletter
Paper Submissions for ISIT 2020 Due Jan 12
Class of 2020-21 Distinguished Lecturers
Ayfer Özgür named the ITSoc 2020 Goldsmith Lecturer
David Tse named the ITSoc 2020 Padovani Lecturer
Post-Doctoral Vacancies at ITCSC, CUHK, Hong Kong
Submission open for ISIT 2020
JSAIT Updates
Report on the 8th Van der Meulen Seminar
Katalin Marton Has Passed Away
PhD and Postdocs Positions in Communication Theory at Karlsruhe Institute of Technology
NVMW 2020 Call for Presentations
Postdoc in Privacy and Fairness at Arizona State University
Assistant, Associate or Full Professor at UC Irvine in Theory and Applications of Data-Driven Systems
Postdocs at EURECOM in Coded Caching and Distributed Computing
Jørn Justesen Has Passed Away
Elwyn Berlekamp Has Passed Away
Elwyn Berlekamp Has Passed Away
Call for Nominations: NVMW Persistent Impact Prize
Pagination
Past meeting
BoG Meeting - Hybrid Meeting, NYC - November 2025
BoG Meeting - Hybrid Meeting @ ISIT 2025, Ann Arbor, Michigan
BoG Meeting - Hybrid Meeting @ ITA 2025, San Diego, California
BOG Meeting - Hybrid Meeting @ University of Toronto
BoG Meeting - Hybrid Meeting @ ISIT 2024, Athens, Greece
BoG Meeting - Hybrid Meeting @ ITA 2024, San Diego, California
BoG Meeting - Hybrid; Atlanta, GA 2023
BoG Meeting - Hybrid Meeting @ ISIT 2023, Taipei, Taiwan
BoG Meeting - Hybrid Meeting @ ITA 2023, San Diego, California
BoG Meeting - October 2022
BoG Meeting - Hybrid Meeting @ ISIT 2022, Espoo, Finland
BoG Meeting - March 2022
BoG Meeting - November 2021
BoG Meeting - June 2021
BoG Meeting - March 2021
BoG Meeting @ New Brunswick, NJ - 2019
BoG Meeting @ Chicago, IL 2015
BoG Meeting @ ISIT 2015, Hong Kong
BoG Meeting - GlobalMeet
BoG Meeting @ ITA 2014, San Diego, CA
BoG Meeting @ ITA 2013, San Diego, CA
BoG meeting @ ITW 2012, Lausanne
BoG meeting @ ISIT 2012, Cambridge, MA
IT BoG meeting @ ITA 2012, UCSD
BoG Meeting @ ITW 2011, Paraty, Brazil
BoG Meeting @ ISIT 2011, St. Petersburg, Russia
BoG Meeting, ISIT 2010
BoG Meeting, La Jolla, CA, 2010
BoG Meeting, ITW Taormina 2009
BoG Meeting, ISIT 2009
Research In Information Theory
This paper presents constructions of DNA codes that satisfy biological and combinatorial constraints for DNA-based data storage systems. We introduce an algorithm that generates DNA blocks containing sequences that meet the required constraints for DNA codes. The constructed DNA sequences satisfy biological constraints: balanced GC-content, avoidance of secondary structures, and prevention of homopolymer runs.
DNA-based data storage systems face practical challenges due to the high cost of DNA synthesis. A strategy to address the problem entails encoding data via topological modifications of the DNA sugar-phosphate backbone. The DNA Punchcards system, which introduces nicks (cuts) in the DNA backbone, encodes only one bit per nicking site, limiting density. We propose DNA Tails, a storage paradigm that encodes nonbinary symbols at nicking sites by growing enzymatically synthesized single-stranded DNA of varied lengths.
The number of zeros and the number of ones in a binary string are referred to as the composition of the string, and the prefix-suffix compositions of a string are a multiset formed by the compositions of the prefixes and suffixes of all possible lengths of the string. In this work, we present binary codes of length n in which every codeword can be efficiently reconstructed from its erroneous prefix-suffix compositions with at most t composition errors.
This paper studies two problems that are motivated by the novel recent approach of composite DNA that takes advantage of the DNA synthesis property which generates a huge number of copies for every synthesized strand. Under this paradigm, every composite symbols does not store a single nucleotide but a mixture of the four DNA nucleotides. The first problem studies the expected number of strand reads in order to decode a composite strand or a group of composite strands.
Synchronization errors, arising from both synthesis and sequencing noise, present a fundamental challenge in DNA-based data storage systems. These errors are often modeled as insertion-deletion-substitution (IDS) channels, for which maximum-likelihood decoding is quite computationally expensive. In this work, we propose a data-driven approach based on neural polar decoders (NPDs) to design decoders with reduced complexity for channels with synchronization errors.
As a potential implementation of data storage using DNA molecules, multiple strands of DNA are stored unordered in a liquid container. When the data are needed, an array of DNA readers will sample the strands with replacement, producing a Poisson-distributed number of noisy reads for each strand. The primary challenge here is to design an algorithm that reconstructs data from these unsorted, repetitive, and noisy reads.
An m-uniform quantum state on n qubits is an entangled state in which every m-qubit subsystem is maximally mixed. Starting with an m-uniform state realized as the graph state associated with an m-regular graph, and a classical n,k,d≥m+1 binary linear code with certain additional properties, we show that pure [n,k,m+1]]2 quantum error-correcting codes (QECCs) can be constructed within the codeword stabilized (CWS) code framework. As illustrations, we construct pure [[22r-1,22r-2r-3,3]]2 and [[(24r-1)2,(24r-1)2-32r-7,5]]2 QECCs.
The standard approach to universal fault-tolerant quantum computing is to develop a general purpose quantum error correction mechanism that can implement a universal set of logical gates fault-tolerantly. Given such a scheme, any quantum algorithm can be realized fault-tolerantly by composing the relevant logical gates from this set. However, we know that quantum computers provide a significant quantum advantage only for specific quantum algorithms.
The number of degrees of freedom (NDoF) in a communication channel fundamentally limits the number of independent spatial modes available for transmitting and receiving information. Although the NDoF can be computed numerically for specific configurations using singular value decomposition (SVD) of the channel operator, this approach provides limited physical insight. In this paper, we introduce a simple analytical estimate for the NDoF between arbitrarily shaped transmitter and receiver regions in free space.